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Criticality of D52 and D53 Ising models: Cluster structure versus populations

B. Borštnik and D. Lukman
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~Received 10 December 1998; revised manuscript received 29 April 1999!

The energy and the specific heat of two- and three-dimensional Ising systems are analyzed in terms of cluster
properties. The energy and the specific heat are decomposed into two components, which are defined by
quantities pertaining to cluster populations and cluster structure expressed in terms of average cluster perim-
eters. It is shown that the structural component of the energy as well as of the specific heat represents the
dominant contribution. Indications are presented that the critical exponent of structural and populational com-
ponents of specific heat matches the exponent of the entire specific heat.@S1063-651X~99!04109-4#

PACS number~s!: 05.50.1q, 36.40.Ei, 68.35.Rh
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I. INTRODUCTION

The most simple form of thermodynamiclike behavior
encountered in lattice percolation problems@1#, while the
lattice systems such as Ising magnets or Potts models ex
already the full complexity of thermodynamic systems co
posed of material particles. The most significant phenom
take place in the vicinity of the critical point. They may ha
different forms of appearance among which the peculiari
of clustering are a prominent feature. In this paper we wo
like to contribute some findings regarding the properties
Ising systems as they appear through the cluster picture
particular, we shall be concerned with energy and spec
heat. Although it seems that the most important ene
changes, when approaching the critical point, are due to
changes in cluster populations, one can also interpret
critical behavior as the rearrangements of the internal st
ture of the clusters composing the system. We shall try
decompose the energy and specific heat into the contr
tions, which are due to the temperature variation of clus
structure and cluster populations. The systems on which
demonstrations will be performed will be two- and thre
dimensional Ising systems. For Ising systems several pro
ties are known analytically in two dimensions while in thr
dimensions the numerical results are rather accurate
many quantities of interest.

In Sec. II it is first demonstrated on the basis of numeri
arguments that at low temperatures a two-dimensional Is
system can be nicely described in terms of cluster structu
clusters are treated as energy excitations of the state of
rated magnetization with all spins pointing up or down. Th
it is shown how the energy and the specific heat can
expressed in terms of cluster properties—in particular, a
function of cluster structure and cluster populations. The
composition is based upon a phenomenological paramet
tion of cluster perimeters as a function of cluster size. In S
III it is shown how the results of the computer simulatio
can be used to decompose the energy and the specific
into structural and populational part; also, the critical exp
nents are discussed. In the last section the conclusions
presented.

II. CLUSTERS IN AN ISING MODEL

In general, one can define the cluster structure of a sys
on the basis of the connectivity criterium between the e
PRE 601063-651X/99/60~3!/2595~6!/$15.00
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ments ~spins, particles, or other constituents!. A cluster is
then defined as a set of elements, which are conne
through the connectivity network. There is no simple ex
methodology to predict the cluster properties such as
frequency of appearance, mean size, radius of gyration,
In the case of ensembles of particles with continuous co
dinates the physical clusters@2# are well-defined entities in a
gas phase@3,4#. The population of clusters in low-densit
gases is proportional to the integral of phase-space contr
tions weighted with the Boltzmann factor@3#.

In the case of the Ising systems one usually encounter
the literature@5–7# the distinction between Ising clusters an
Ising droplets, which differ in the definition of the conne
tivity criteria. The most straightforward formulation of th
connectivity is the one due to which two spins are conside
to be connected if they have the same orientation and are
neighbors~neighbors along the diagonal are not counted
first neighbors!. It turns out that the clusters that are defin
in such a way, Ising clusters, do not possess the des
behavior in the vicinity of the critical temperature~the criti-
cal exponents of zeroth, first, and second moments of
histogram of cluster populations that behave asT2Tc risen
to the power 22a, b, and2g, respectively, do not belong
to the Ising universality class!. It was shown that it is pos-
sible to dilute the bonds in such a way that only a portion
them remain active and the resulting clusters, called Is
droplets, possess the proper critical behavior.

In this paper we are concerned with what is defined ab
as Ising clusters, which are held together by nondilu
bonds, and will term them simply as ‘‘clusters.’’

The cluster structure is easy to predict well below t
critical temperature of a ferromagnetic system when the m
jority of spins are aligned in a certain direction while th
excitations in the form of clusters with other spin directio
are populated with the cluster numbers

N~n,t,b!}g~n,t !exp~22bt !. ~1!

n is the cluster size~the number of spins being connecte
with the adjacency criterium and being surrounded by sp
pointing in another direction! and t should be understood a
the Ising cluster perimeter~the number of antiparallel spin
pairs on the outer and inner boundary of the cluster!. The
degeneracy factorg(n,t) tells us how many distinct cluste
2595 © 1999 The American Physical Society
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2596 PRE 60B. BORŠTNIK AND D. LUKMAN
forms with certainn,t values exist. The external magnet
field is supposed to be absent, spin-spin coupling parameJ
to be of unit strength. The form of the Boltzmann fact
exp(22bt) with b being the inverse temperature, stems fro
the fact that the energy cost to form a cluster is equa
twice the number of spin pairs with opposite orientation
the cluster boundary, which is defined as the perimeter of
cluster. The validity of Eq.~1! can be checked only at tha
interval of cluster sizes whereg(n,t) is known. We prepared
a computer program by means of which all the clusters w
n<10 in two dimensions were generated. This enabled u
evaluate Eq.~1! exactly. The results of cluster population
provided by Eq.~1! was compared with the results of
Monte Carlo computer simulation. In Fig. 1 we can see t
at b50.75; the differences between the results of simulat
and the prediction of Eq.~1! is too small to be observed o
the figure. Atb50.6 the difference starts to appear and
b50.5 andb50.44 there is already a systematic discre
ancy between the two types of results. We can thus conc
that at low temperatures the state of an Ising ferromagnet
be easily described in terms of a cluster picture. Since o
small clusters are present~notice a sharp decay of cluste
populations at the lowest temperature! one only needs to
know g(n,t) and all the other properties such as specific h
or magnetization can be immediately calculated. In what
lows we shall present the methodology and analyses of I
models relevant at any temperature in order to show that
approach through a cluster picture is one of the poss
ways to study model spin systems.

The total energyE52(sisj of a D-dimensional Ising
system in the absence of the magnetic field can be written@8#
as E52DN12N12 whereN is the total number of spins

FIG. 1. The figure illustrates the predictive power of Eq.~1! in
a two-dimensional Ising system. Log-log plot of the histogram
cluster populations for 1<n<10 at and well below the critical tem
perature~inverse temperaturesb50.44, 0.5, 0.6, and 0.75!. Solid
lines represent the prediction of Eq.~1! and dashed lines represe
the results of computer simulation. The lower pair of lines, wh
nearly coincides, belongs tob50.75 and with growing tempera
tures the discrepancy increases. The differences between the
of curves forb50.5 andbc50.44 are shaded. Quantitative me
sure of the discrepancy between the prediction of Eq.~1! and ob-
served populations†defined as the sum(n51

10 ln@Npred(n,b)#
2ln@Nobs(n,b)#‡ is presented in the inset.
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and N12 , the number of neighboring pairs of spins wi
opposite direction. Further,N12 can be expressed as a su
of perimeters of1 or 2 clusters,

2N1252( t i
152( t i

25S ( t i
11( t i

2 D . ~2!

Summing over perimeters can be also performed indire
by summation over products of cluster populations mu
plied by the average perimeters,

2N12

N
5

E

N
1D5

1

N (
n

N1~n,b!^t1~n,b!&

1
1

N (
n

N2~n,b!^t2~n,b!&1
t`

1

N
1

t`
2

N
; ~3!

^t(n,b)& means the average value of the perimeter of
cluster withn spins,t`

6 represents the perimeter of eventu
infinite, percolating clusters, andN(b,n) is the number of
clusters with sizen at the inverse temperatureb.

Let us first focus our attention on the behavior
^t(n,b)& on n. Numerical results provided by our comput
simulation ~see Fig. 2! lead us to the conclusion that then
dependence of̂t(n,b)& can be fitted in the case of a two
dimensional as well as in the case of a three-dimensio
Ising model in the following way:

^t~n,b!&5
t

n
u`~b!n1k~b!nb(b). ~4!

At critical temperature the first term on the right-hand size
Eq. ~4! confirms the notion that the energy of a system is
extensive quantity: It says that the energy of a percolat
cluster scales linearly with the cluster size, and if this
combined with the property of the percolation cluster that
size scales linearly with the number of spins in the en
system, we getE}N. The second term on the right side o

f

airs

FIG. 2. The three sets of data points give evidence that clos
the critical temperature the average cluster perimeter of Ising c
ters in two and three dimensions behave as predicted by Eq.~4!.
The lines, which are drawn through the points, are just to guide
eye.
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Eq. ~4! represents in the limitn→` just a small correction,
provided thatb(b),1. Above the critical temperature on
may have conceptual difficulties in understanding the Eq.~4!
because forT.Tc infinite clusters do not need to be prese
~in two dimensions they are not! and t/nu`(b) should be
understood just as a parameter obtained in the fitting pro
dure of^t(n,b)& by extracting the information from the larg
est available cluster. In Fig. 2 one can see that Eq.~4! applies
with equal accuracy on the critical point as well as off t
critical point. For the analyses that follow the phenomen
logical finding that the average cluster perimeter can be
pressed in the form of Eq.~4! is of crucial importance.

Assuming thatN1(n,b)5N2(n,b) and introducingP`
6

as the percentage of spins being part of infinite percola
clusters one obtains

E~b!

N
1D5

t

n U
`

~b!S 2

N(
n

nN~n,b!1P`
11P`

2D
1

2

N (
n

N~n,b!k~b!nb(b). ~5!

One can exploit the sum rule that follows from the requi
ment that the number of up and down spins should add to
total number of spins,

2

N F(
n

nN~n,b!1P`
6G51 ~6!

and Eq.~5! can be further simplified:

E~b!

N
1D5

t

n U
`

~b!1
2

N
k~b!(

n
N~n,b!nb(b). ~7!

This is the final form of the energy expression, which de
onstrates how the energy of the Ising spin system can
partitioned in the cluster structure versus population cont
The first term on the right side has pure cluster struct
character, sincet/n can be interpreted in terms of th
smoothness of the clusters. As we shall see latert/nu` grows
as a function of temperature, which means that the clus
are more and more rough as the temperature grows.
second term in Eq.~7! has a mixed character since the qua
tities k(b) and b(b) refer to the cluster structure an
N(n,b) represents the cluster populations.

The derivative of the energy with respect tob results in
the specific heat, which will be decomposed into structu
cp

str(b) and populationalcp
pop(b) parts. The first quantity

represents the contribution to the specific heat due to
temperature change of internal structure of clusters and
latter represents the contribution due to the change of t
populations. Intuitively, one would expect thatcp

pop(b)
should be the essential component of the specific hea
should exhibit the critical behavior atT5Tc at least in two
dimensions where the thermodynamic transition at the c
cal point represents simultaneously also the percolation t
sition of spin-up or spin-down clusters. On the other ha
cp

str(b) represents the contribution of the restructuring
clusters as the temperature is changing and there is no tr
t
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answer to the question how does the cost of restructuring
clusters compare with the cost of the changes in clu
populations.

It follows from Eq. ~7! that the expression forcp
str(b)/N

andcp
pop(b)/N have the following form:

cp
str~b!/N52b2F ]

]b S t

n U
`

~b! D
1S ]

]b
k~b! D 2

N (
n

(N~n,b!)nb(b)

1S ]

]b
b~b! D k~b!

2

N (
n

~N~n,b!!ln~n!nb(b)G ,

~8!

cp
pop~b!/N52b2

2

N
k~b!(

n
S ]

]b
N~n,b! Dnb(b). ~9!

III. NUMERICAL RESULTS AND DISCUSSION

In spite of the fact that today many modern versions
Monte Carlo procedures are available@9#, we used an ordi-
nary Metropolis algorithm@10#. We generated the histo
gramsN(n,b) by means of Monte Carlo computer simul
tion on 5003500 spin systems in two dimensions an
50350350 systems forD53. In Fig. 3 the resulting histo-
grams are presented in the form of a log-log plot forD52.
Close to the critical pointN(n,b) should behave as the in
verse power of the cluster size in order to fulfill the sca
invariance principle. Off the critical temperature the hist
grams should decay faster than predicted by the inve
power law. The exact form of this decay is not known@7#,

FIG. 3. Log-log plot of cluster populations for a two
dimensional Ising system for the critical temperatu
(bc'0.44—lowermost set of data points! and for inverse tempera
turesb50.4, 0.35, and 0.24—upper most set of data points. O
can see that only at the upper most temperature the histogram
parts from the inverse power law on the interval 1<n<3000. The
dashed line drawn through the lower most set of data points has
slopetc52.06; the slopes of other sets of data points enable u
estimate the variation oft(b) ~see Fig. 7!.
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2598 PRE 60B. BORŠTNIK AND D. LUKMAN
but in general the exponential decay, which is superimpo
upon the inverse power law, is not far from reality, whi
means thatN(n,b) can be parameterized in the followin
form:

N~n,b!}
exp@2a~Db!(1/s)n#

nt(b) . ~10!

On the basis of the results presented in Fig. 3 we were ab
show that in a two-dimensional case our result does not
part appreciably from the standard value oft, which is
t(bc)5186/90. This value results from the slope of the lo
log plot of N(n,bc). As far as thes value is concerned we
were only able to reproduce it roughly by the analysis
N(n,b) histograms above the critical temperature as it
shown in Fig. 4. The resultings value was approximately
the same as one would expect for Ising droplets, but
detailed difference was not established.

In three dimensions we were able to corroborate o
qualitatively the form ofN(n,b), but the above-mentione
methodology turned out to be less successful than in a t
dimensional case as far as the reproduction ofs(50.64) and
t(52.2) values are concerned.

A. Energy partitioning

Let us now address the question of the energy partition
on the basis of cluster structure and populations. What
need are the following quantities: the quotientt/n in the limit
of the infinite cluster size, the quantitiesk(b), b(b), and the
histogram of cluster populations. Let us first present the p
titioning of the energy according to Eq.~7!. The first term on
the right-hand side~rhs! of this equation is the limiting value
t/nu` , which was calculated on the basis of several differ
algorithms independently designed for two and three dim
sions. Clusters of all sizes were carefully analyzed and s
cial emphasis was given to large cluster limit. In a thre
dimensional case there is an additional problem beca
infinite clusters are always present, and finite clusters are
at all temperatures. At infinite temperature where the sp

FIG. 4. The condition that cluster populations behave in
form of Eq. ~10! is fulfilled if ln N(n,b)nt behaves as a linear func
tion of n at the temperatures off the critical point. This is corrob
rated by this figure.
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are not correlated, both1 and 2 spins are present with
probability p50.5 that is above the percolation thresho
density of a site percolation problem on ad53 cubic lattice,
which means that both1 and 2 clusters percolate. The
problem is that the periodic boundary conditions impose c
tain constraints on the percolating cluster boundaries. H
ever, the valuet/nu` can still be determined as a function o
temperature. We have chosen the approach, which was
dardized in the studies of fractal properties of clust
@11,12#. Such an analysis consists of counting spins and
rimeter sites belonging to the part of ‘‘infinite’’ clusters i
concentric cubes and in this way one can determinet/n val-
ues. In Figs. 5 and 6 the results are given for a two- a
three-dimensional case. For a two-dimensional case the
energy is available from an Onsager exact solution@13# and
was nicely reproduced by our computer simulations~upper
curve of Fig. 5!. In three dimensions the total energy shou
behave asDb12a with a'0.12 @8#. If the upper curve of

e FIG. 5. Total energy and its decomposition according to Eq.~7!

for a two-dimensional Ising system.Ẽ(b) refers to the last term on
the rhs of Eq.~7!. The upper most curve is the exact Onsage
result.

FIG. 6. Same as Fig. 5, except that for a three-dimensional c
The upper most curve is obtained as the standard energy avera
computer simulation. Note that the energy scale belonging to
lower most curve is drawn on the right side of the figure.
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Fig. 5 is analyzed in this context one getsE2Ec}Db0.34,
which is obviously an overestimation ofa value. The dis-
crepancy is due to finiteness of spin systems (m3m3m
with m550). When the analyses of the results were p
formed for various lattice sizes (m510,20,50) we found tha
the results of the extrapolation procedure for largen values
become consistent with the above-mentioned consensua
value.

Decomposition of total energy into the two components
proposed by Eq.~7! is depicted in the lower two curves o
Fig. 5. It can be seen thatt/nu` is the essential componen
while the second term on the rhs of Eq.~7! is a minor con-
tribution. This characteristic is even more pronounced
three dimensions~Fig. 6!.

The sum of the lower two curves in Fig. 5~for D52) and
Fig. 6 ~for D53) reproduce the total energy~upper most
curves of the respective figures!.

B. Specific heat partitioning

The evaluation of the expressions for the specific h
@Eqs.~8! and~9!# turns out to be less accurate than the eva
ation of the energy terms, which are depicted in Figs. 5
6 because the uncertainties in the energy curves are stro
amplified by the derivation procedure. We need to know
functionsk(b), b(b), andt(b) as well as other details o
the histogram of cluster populationsN(n,b). In Fig. 7 the
functions k(b), b(b), and t(b) are presented for a two
dimensional Ising system. Since the functions were ca
lated only for discreteb values separated for 0.01, the d
rivatives can be only roughly estimated. As far as t
histogram of cluster populations is concerned we can
from Fig. 3 that on the interval 0.4<b<.44'bc the quantity
N(n,b), when represented on the log-log scale, does
depart from a straight line that means that the decay funct
which is in Eq. ~10! represented by the facto
exp@2a(Db)(1/s)n#, remains close to unity within the interva
of n values accessible to our computer simulationn
,4000). This gives us the information about the upper lim
of a parameter:a,0.0003. Following this argument one ca
evaluate Eq.~8! and by replacing the summations by integr

FIG. 7. Temperature dependence of the parameterst(b), b(b),
andk(b). The numerical uncertainty ofk(b) andb(b) parameters
is about 10%, whilet(b) is about four times more accurate.
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tion, takingn as a continuous variable, one obtains the f
lowing expressions for the structural and populational co
ponents of the specific heat:

cp
str~b!/N52b2F S ]

]b

t

n U
`

~b! D
10.02S ]

]b
k~b! D 1

„t~b!2b~b!21…

10.02S ]

]b
b~b! D k~b!

1

„t~b!2b~b!21…2
,

~11!

cp
pop~b!/N5b20.02k~b!S ]

]b
t~b! D 1

„t~b!2b~b!21…2
.

~12!

In Fig. 8 the components of the specific heat are presen
for a two-dimensional case as obtained on the basis of E
~11! and ~12!. We can see that the structural compone
dominates over the populational component significan
Both components sum up roughly to Onsager’s exact va
Among the three contributions to the structural compon
corresponding to the three terms on the right side of Eqs.~8!
and ~11! the first term](t/nu`)/]b clearly dominates. The
other two terms appearing on the rhs of Eq.~11! are one
order of magnitude smaller and have negative values. A
the value ofcp

pop(b)/N is approximately by one order o
magnitude smaller thancp

str(b)/N, but it possesses a positiv
sign. In three dimensions the situation is quite similar as
two dimensions, except that the Monte Carlo simulation
sults allow only rough estimates of the the quantitiesk(b),
b(b), andt(b). Their derivatives are not accessible and t
specific heat estimates should be based entirely on the

FIG. 8. Plot of the specific heat contributions for the tw
dimensional Ising system. Solid curves marked with ‘‘pop,’’ ‘‘str,
and ‘‘Ons’’ represent populational, structural, and exact Onsag
specific heat, respectively. Dashed curves from the top downw
represent the first, the second, and the third term on the right sid
Eq. ~8!. The vertical bars atb50.42 represent the magnitude o
numerical error, which does not vary along the interval ofb values.
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2600 PRE 60B. BORŠTNIK AND D. LUKMAN
presented in Fig. 6. Also in three dimensions the te
](t/nu`)/]b dominates, while the other terms represent
minor components.

C. Critical exponents

The most ambitious goal, which we can envisage, is
evaluation of the critical exponents of the two components
the specific heat. In previous sections we provided some
dence regarding the temperature dependence of total en
indicating that numerical calculations are able to reprod
the critical exponent of entire specific heat. When referr
to the critical exponents of structural and populational co
ponents of the specific heat the matters become much m
delicate due to the problems of numerical accuracy. Eq
tions ~11! and~12! are not useful in this respect because th
are not valid in the immediate neighborhood of the critic
point. They were derived under the supposition that the f
tor exp@2a(Db)(1/s)n# is equal to 1, thus leaving out th
explicit Db dependence becausea factor was found to be
below the threshold of measurability~see the correspondin
remark in Sec. III B!. However, for the purpose of critica
exponent determination one does not need to know tha
factor. If one just supposes that it does not depend uponb it
is possible to perform the three summations on the right s
of Eqs.~8! and~9!. All three sums can be transformed to th
integrals of the type*nz exp@2a(Db)(1/s)n#dn. Performing
the integrals@14# one obtains power-law dependence onDb.
The summation in the second and in the third term on
right side of Eq.~8! results in a factor (Db)(t2b21)s. This
factor has to be multiplied with the derivatives]k(b)/]b
andk(b)]b(b)/]b, respectively. Since we do not know a
curately enough the temperature dependence ofk(b) and
b(b) we can make no definitive statement about the criti
behavior of the last two terms on the right side of Eq.~8!.
The first term on the right side of Eq.~8! is in two dimen-
sions less problematic and due to the fact that it is also do
nant, as seen in Fig. 8, we can speculate that the linearit
t/nu` ~see the middle curve of Fig. 5! can be interpreted a
cp

str5const, which means that the critical exponent of t
e

e
f
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rgy
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l
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e
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e

structural component of the specific heat is zero and is t
equal to thea value of the entire specific heat. In thre
dimensions we are not able to estimateastr.

cp
pop contains only one term@Eq. ~9!# and it involves sum-

mation, which results incp
pop}(Db)(t2b212s)/s. This

agrees with the consensus value of thea exponent for the
entire specific heat: (t2b212s)/s is equal to 0.060.1 in
two dimensions and 0.360.2 in three dimensions that com
pares satisfactorily witha50 anda50.12, respectively@see
the discussion ona(D53) in Sec. II#.

IV. CONCLUSIONS

In this paper we tried to work out the cluster picture
two- and three-dimensional Ising models. We have sho
the following:

~i! The energy of a spin system can be expressed in te
of cluster structure and cluster populations.

~ii ! At low temperatures the systems can be fully d
scribed in terms of macroscopic spin domains intersper
with small clusters of opposite spin direction. As long
these clusters can be considered as noninteracting their p
lations can be obtained by a simple approach with the o
input being temperature and the degeneracy factor of clus
@g(n,t)#; this is the number of distinct clusters as a functi
of cluster size and cluster perimeter.

~iii ! At any temperature the specific heat can be deco
posed into two parts: the populational and the structural p
The structural part dominates in spite of the fact that o
would expect, at least in two dimensions, that it is the cha
in cluster populations that is responsible for the phenom
such as phase transition.

~iv! The evidence is provided that the critical expone
of the essential parts of both components of the specific h
are equal to the critical exponents of the entire specific h
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